Натуральная философия и систематика мира исаака ньютона. История новоевропейской философии в ее связи с наукой

ИСААК НЬЮТОН (1642-1727)

Если Галилей был посредником между естествознанием и философией в первой половине ХVIIв., то во второй половине ХVIIв. таким посредником стал И. Ньютон - математик, физик, астроном, гениально сочетавший таланты теоретика и экспериментатора, творца и систематика.

По окончании Кембриджского университета Ньютон сразу был приглашён на кафедру натуральной философии; с 1703г. был президентом Лондонского королевского общества, причем ежегодно переизбирался вплоть до самой смерти; был членом парламента от научного сообщества, но политикой совсем не интересовался. Основное сочинение - знаменитые "Математические начала натуральной философии"(1687г.).

Интерес к философской проблематике был вызван у Ньютона результатами его собственных научных исследований, хотя, с другой стороны, он искал в философии, будучи верующим, ответы на волновавшие его религиозные вопросы. В этом смысле его философия не была чисто научной, имея двоякую ориентацию -научную и религиозную, а потому можно говорить о двоякого рода предшественниках Ньютона: а) великие ученые-естествоиспытатели (Коперник, Галилей, Кеплер), создатели новой науки о природе, близкие ему и методологическими взглядами; б) популярное в Англии ХVIIв. религиозно-философское течение кембриджских платоников во главе с Г. Муром и Р. Кэдворсом.

Философские взгляды И. Ньютона.

Новое соотношение науки и философии. Открытый Ньютоном закон всемирного тяготения венчает цепь открытий естествознания Нового времени: будучи научно точным и в то же время предельно общим, он объясняет любое движение - и планет вокруг Солнца, и яблока, падающего с яблони. Натурфилософия Ньютона реализовала научную программу Галилея, его идеал научного знания, состоящий в гармонии опыта с математикой. Она отвечала требованиям противоположных философских направлений, преодолевая их крайности: опиралась на факты, чего добивались эмпирики, и давала дедуктивные обоснования, чего жаждали рационалисты. Спор об истинном методе, неразрешимый в рамках абстрактной философии, был решён в ходе поступательного развития науки. Точная наука о природе, опирающаяся на предложенную Ньютоном методологию, превратилась в достоверный факт. "Математические начала натуральной философии" не только заложили фундаментальные основы последующего развития физики, но стали образцом для других наук в их стремлении к точности и обоснованности и критерием совершенства в методологии любого научного знания.

Натурфилософия с её общими и чисто теоретическими проблемами традиционно была тесно связана с философией, соответствующим образом согласно своим предпочтениям определявшей как понимание, так и способы решения натурфилософских проблем. Ньютон впервые в истории философии сформулировал методологию естествознания, полностью независимую от любой общефилософской концепции. В результате естествознание, став самостоятельным методологически, заняло в иерархии наук высшее место, дотоле принадлежавшее философии. И если раньше частные науки в развитии своей проблематики исходили из общефилософских концепций, то теперь учёные-естествоиспытатели философскими обобщениями результатов своих исследований начинают влиять на сам процесс и направление развития философии. Ньютон, будучи выдающимся представителем учёных нового типа, показал, как следует строить философию, опирающуюся на естествознание и математику. В следующем столетии этот подход стал доминирующим.

Концепция описательной науки . В понимании сущности науки Ньютон следует Галилею: объект науки -явления природы, её цель -нахождение устойчивых связей между явлениями. Из компетенции науки должны быть исключены трансцендентные причины явлений, ибо они выходят за границы опыта, а наука может опираться только на опыт. Всё, не следующее из явлений, гипотетично, а любые гипотезы - метафизические или физические - несовместимы с экспериментальной наукой. Например, исследуя тяжесть, физика устанавливает законы, которым она подчинена, но не выдвигает гипотез о её природе. Такого рода ограничения были направлены против господствовавших тогда естественнонаучных концепций - как аристотелевско-схоластической, так и картезианской. Ньютон понимает науку о природе как описание явлений, то есть тем способом, который ученыеXIXв. неправомерно считают своим открытием. Причем даже сам термин "описание" использовался ближайшими учениками Ньютона: достаточно, отмечает ученик Ньютона Кейл, пользоваться вместо предлагаемой логиками дефиниции предмета только «описанием , с помощью которого он будет понят ясно и отчетливо».

Строго фактическим должно быть лишь основание (принцип) науки, после установления которого наступает очередь дедукции для выведения из этого основания следствий. Наука о природе, созданная Ньютоном, своею точностью и определённостью обязана соединению эмпирического опыта с логической дедукцией.

Метафизика. Однако на самом деле научные взгляды Ньютона не были свободны от гипотез, выходивших далеко за границы эмпирических фактов. Формулируя законы механики (три закона Ньютона), он вводит одновременно с понятием относительного пространства, известного из опыта, понятие абсолютного пространства, а также понятия абсолютного времени и абсолютного движения . Более того, полагая, что абсолютное пространство не обладает материальными свойствами, Ньютон делает вывод о его духовной природе (напомним, что если Ньютон отождествил пространство с духом, то Декарт отождествил его с материей). Такому пониманию абсолютного пространства он придавал большое значение с точки зрения его метафизических следствий: будучи противником метафизической трактовки науки, он не был противником метафизики вообще, причем его собственная метафизическая концепция была не натуралистической, а идеалистической. Ньютон считал материализм ложной метафизической теорией, усматривая особую ценность своих взглядов на природу в том, что они, ведя к признанию духовной природы абсолютного пространства, должны были стать неопровержимым аргументом против материализма.

Из концепции абсолютного пространства, обладающего духовной природой(здесь Ньютон следует кембриджским платоникам), Ньютон делает теологические следствия: пространство есть свойство абсолютной субстанции, или Бога, который через пространство как своеобразный орган активно реализует свою вездесущность. Будучи создателем новой науки, Ньютон вместе с тем своими религиозно-метафизическими взглядами продолжал поддерживать дух средневековой схоластики, сохранившей сильные позиции, в частности, в Кембридже.

Характерно, что Ньютон, разработавший методологию науки о природе, совершенно автономную по отношению к религии, результаты естественнонаучных исследований использовал как аргументы в поддержку истин христианства. В частности, он искал в этих результатах доказательство бытия Бога. Но если раньше таким доказательством считали, в первую очередь, целесообразность мира, Ньютон, полагавший, что целесообразность в природе есть продукт человеческого заблуждения, ибо в природе действуют механические причинно-следственные связи, именно эту механичность природы положил в основу своего доказательства бытия Бога. Природа подобна машине, построенной человеком, а потому она не может не быть творением мыслящего существа, то есть мир, как совершеннейшая машина, сотворён совершеннейшим разумом, или Богом. Это доказательство бытия Бога, названное физико-теологическим , более всего соответствовало ориентированному на науку мировоззрению Нового времени и потому пользовалось наибольшим признанием. Таким образом, более других ученых ХVIIв. способствовавший созданию автономной науки о природе (натуральной философии), Ньютон, используя результаты своих естественнонаучных открытий для подкрепления христианской веры, придал этой науке религиозно-метафизическую окраску.

Значение Ньютона для развития философии Нового времени состоит в следующем: а) создание методологических оснований науки о природе; б) соединение механистического естествознания с теологией, в значительной мере способствовавшее укреплению позиций религиозной философии, получившей опору в новой науке. Влияние Ньютона связано, прежде всего, с его научными взглядами и открытиями, положившими начало расцвету математики и математического естествознания. В Англии сформировалась группа "ньютонианцев", считавших Ньютона не только гениальным ученым, но и выдающимся философом: концепция абсолютного пространства и времени, а также физико-теологическое доказательство бытия Бога значили в их глазах не меньше, чем закон всемирного тяготения. Ньютону весьма близок научными и философскими взглядами был, в частности, выдающийся английский ученый Роберт Бойль (1627-1691), тоже занимавшийся общефилософскими проблемами науки о природе и её согласованием с религией. Влияние Ньютона не ограничивалось научными кругами. Деисты восприняли его концепцию отношения Бога к миру, что оказало колоссальное воздействие на формирование интеллектуальной культуры Просвещения - особенно после популяризаторских "Писем об англичанах” Вольтера, благодаря которым научные идеи Ньютона стали доступны широким кругам интеллигенции.

Что касается оппозиции, то она была направлена против двух, полярных друг другу элементов учения Ньютона: а) феноменалистичеcкой концепции науки (спор с Ньютоном вели сначала картезианцы, а затем - в Германий - школа Вольфа), б) концепции абсолютного пространства и времени, причем характерно, что ""естественники"" поддерживали Ньютона, а философы самых разных направлений - от рационалистов вольфовской школы до представителей французского Просвещения - выступали против.


Исаак Ньютон был первым, кто сумел представить классическую механику в целостном виде. Его эпохальный труд «Математические начала натуральной философии» был опубликован в 1687 г. Основания механики Ньютона составляют три закона. Состояние физических объектов описывается посредством задания их масс (mi) и координат, пространственных (Дг,) и временных (Дг,). Часто говорят, что это состояние характеризуется посредством импульсов (pi) и координат. В таком случае масса входит в состав импульса. Используя указанные выше концепты, Ньютон записал дифференциальный закон движения, позволяющий предсказывать последовательность состояний физических объектов. Переходим к рассмотрению философских вопросов классической механики.
Об исходных концептах. Концепты массы, длительности и расстояния не определяемы. Поэтому неправомерно утверждать, например, как это часто делается, что масса является мерой инертности. Что касается концепта инерции, то он вообще оказывается излишним. В выражения законов Ньютона не входит признак инерции.
Истинное, значит, математическое? Говоря о времени, пространстве, движении, Ньютон полагал, что они могут быть либо абсолютными, истинными, математическими, либо относительными, кажущимися, обыденными. Сказано предельно откровенно: истинное - значит математическое; отход от математики - путь к кажущемуся и обыденному.
На первый взгляд совершенно непонятно, почему в физике истинным признается нечто математическое, т.е., строго говоря, не физическое. Суть дела нам видится в следующем. Физическая теория должна руководствоваться не обыденными, а рафинированными концептами. Только в этом случае она может претендовать на установление истины, удостоверяемое среди прочего экспериментальным путем. Рафинированные физические концепты моделируются посредством математических концептов. Но при этом они не теряют своей исходной природы. Нет никакой необходимости сводить физику к математике. Вопреки Ньютону говорить следует не о математических началах физики, которую он называет натуральной философией, а о концептуальных основаниях.
Что такое пространство и время? Строго говоря, в классической механике вводятся концепты длительности и протяженности (размеров и расстояний), а не пространства и времени. При желании совокупность длительностей можно обозначать одним словом, временем. Совокупность протяженностей можно ради экономии слов называть пространством. Важно, однако, понимать, что дополнительно к длительностям не существует время, а дополнительно к протяженностям нет пространства.
Пространство и время абсолютны? Ньютон считал их именно таковыми, т.е. абсолютными. Но в предыдущем абзаце уже разъяснено, что пространство и время не являются чем-то реальным. Но если используются термины пространство и время, то во избежание путаницы непременно следует перейти к протяженностям и длительностям. Разумеется, они изменчивы и, следовательно, не абсолютны. Пытаясь найти возможные основания обсуждаемой абсолютности, можно указать на следующие два обстоятельства. Во-первых, в рамках классической механики некоторые зафиксированные длительности и протяженности во всех системах отсчета являются одними и теми же, т.е. являются инвариантами. Во-вторых, пространственные и временные единицы измерения конгруэнтны друг другу. Допустим, что длина тела составляет 3 см. Первый сантиметр конгруэнтен второму, а второй третьему. В отличие от тел единицы измерения не деформируемы. Вполне резонно использовать концепты инвариантности протяженностей и длительностей и конгруэнтности единиц измерения, но они не являются обоснованием абсолютности пространства и времени.
Что такое координатное пространство, например декартова система координат? Это вспомогательный концепт, который не является обозначением чего-либо реального. Использование для его обозначения слова пространство часто приводит к недоразумениям, ибо возникает иллюзия, что речь идет о чем-то реальном. Реальны системы отсчета, а не Системы координат.
Являются ли физические тела материальными точками? Физические тела являются физическими, а не материальными телами. Что такое материальное тело? На этот вопрос в рамках классической механики невозможно найти ответ. Что такое физическое тело? Объект, обладающий теми признаками, которые рассматриваются в классической механике, т.е. массами, размерами, длительностями, импульсом, кинетической и потенциальной энергией. Являются ли физические тела материальными точками? Нет, не являются, ибо они обладают протяженностями. Но почему же в таком случае в физике используется концепт точки? Используется концепт не физической, а геометрической точки. Делается это постольку, поскольку существует известный изоморфизм между математическими и физическими концептами. Центр масс системы тел моделируется посредством понятия геометрической точки, но он не является отдельным телом. Если тело принимается за точку, то налицо упрощающий прием, только и всего. В нем часто видят какую-то чуть ли не таинственную ухищренность физики. От нее не остается следа, если толково рассмотреть существо математических моделей, т.е. интернаучных связей физики с математикой.
Бесконечны ли пространство и время? И этот вопрос имеет довольно искусственный характер. Классическая механика оперирует по определению длительностями и протяженностями. Они не могут принимать бесконечные значения. Выражение Аг = °° или At = °° бессмысленны. Дг обозначает либо размеры тела, либо расстояние от этого тела до другого эмпирически фиксируемого тела. И в первом, и во втором случае Аг конечно. Длительность At являет признаком некоторого процесса, состояния которого также эмпирически фиксируемы. И она всегда конечна. Иногда приравнивание величин длительностей и протяженностей бесконечности уместно в качестве упрощающего приема. Но он не свидетельствует в пользу бесконечности пространства и времени.
Первый закон Ньютона является не законом, а принципом? На наш взгляд, дело обстоит именно таким образом. Обычно этот закон приводится в следующей формулировке: материальная точка в отсутствие действия на нее сил или при их взаимном уравновешивании находится в состоянии покоя или равномерного движения. Этот же вывод вроде бы следует из второго закона Ньютона. Но в чем же в таком случае смысл первого закона Ньютона? На этот вопрос физики дают четкий ответ: первый закон Ньютона задает представление о тех системах, в которых выполняются второй и третий законы Ньютона. Эти системы отсчета принято называть инерциальными. Таким образом, первый закон Ньютона расчищает концептуальный путь для второго и третьего закона Ньютона. Такого рода концепты принято считать принципами.

Что касается второго закона Ньютона, то он ни в коей мере не определяет смысл третьего закона. Иначе говоря, он не обладает потенциалом принципа. То же самое относится и к третьему закону Ньютона.
Имеет ли место в классической механике плюрализм? Многим физикам на протяжении по крайней мере трех веков она казалась безальтернативной. Но, как выяснилось, это не так. Речь идет об очень интересном в философском отношении феномене, прекрасно осмысленном О.С. Разумовским. В кратчайшем изложении суть дела состоит в следующем.

Наиболее общая формулировка закона движения механических систем получается при использовании не второго закона Ньютона, а принципа наименьшего действия в форме Гамильтона. Среди всех достаточно малых возможных перемещений механической системы за один и тот же промежуток времени действительным является то, для которого будет минимальным действие 5:

где I - функция Лагранжа, равная разности кинетической Г и потенциальной V энергии,

Как в случае механики Ньютона, так и в случае аналитической механики, или лагранжевой механики, уравнения движения записываются в дифференциальной форме. Но первая базируется на двух векторах: импульсе и силе, а вторая - на двух скалярах кинетической энергии и так называемой силовой функции Я (Я = Т + V). Механические явления осмысливаются по-разному: в механике Ньютона на основе понятия силы, а в Лагранжевой механике на основе понятия действия. При описании некоторых явлений механика Ньютона и Лагранжева механика тождественны друг другу. Но есть немало таких ситуаций, для объяснения которых лучше подходит либо одна, либо другая механика, или даже исключительно только одна из них. Следовательно, механика Ньютона и механика Лагранжа не полностью эквивалентны друг другу, т.е. являются конкурирующими теоретическими концепциями. А это означает, что теоретическая механика в концептуальном отношении плюралистична, неоднозначна. И для нее актуально многообразие теоретических позиций.
Классическая механика считается самой простой из всех физических теорий. Строго говоря, ее «простота» заключается исключительно в том, что она ближе других физических теорий примыкает к обыденному знанию. С позиций наиболее развитого физического знания классическая механика для понимания исключительно трудна прежде всего в силу недостаточной концептуальной силы ее понятий. Читатель быстрее всего готов оспорить многие из тех выводов, которые сделаны выше. Это хорошо, ибо философия физики не предполагает единомыслия.

Наверное, нет ни одного человека на свете, который бы не знал, кто такой Исаак Ньютон. Один из самых выдающихся мировых учёных, сделавший открытия сразу в нескольких областях науки, давший начало научным направлениям в математике, оптике, астрономии, один из отцов-основателей классической физики. Итак, кто такой Исаак Ньютон. Сегодня широко известна краткая биография и его открытия.

Вконтакте

История ученого и исследователя

Про него можно было сказать словами поэта Николая Тихонова: «Гвозди б делать из этих людей. Крепче б не было в мире гвоздей». Родившись прежде положенного срока, очень маленьким и слабым, он прожил 84 года в полном здравии, до глубокой старости, посвятив всего себя развитию науки и занимаясь государственными делами. В течение всей своей жизни учёный придерживался твёрдых моральных принципов, был образцом честности, не стремился к публичности и славе. Не сломила его даже воля короля Якова II.

Детство

Своё рождение в канун католического рождества ученый считал особым знаком провидения. Ведь ему удалось совершить свои величайшие открытия. Словно новая Вифлеемская звезда, он осветил многие направления, по которым в дальнейшем развивалась наука. Многие открытия были сделаны благодаря намеченному им пути.

Отец Ньютона, казавшийся современникам чудаковатым и странным человеком, так и не узнал о рождении сына. Успешный фермер и хороший хозяин, всего несколько месяцев не доживший до появления сына на свет, оставил семье значительное хозяйство и денежные средства.

С юношеских лет, всю свою жизнь испытывающий нежную привязанность к матери, Исаак не мог простить ей решения оставить его на попечительство бабушки и дедушки, после того, как та вышла замуж во второй раз. Автобиография, составленная им ещё в подростковом возрасте, повествует о порывах отчаянья и детских планах мести матери и отчиму. Исключительно бумаге смог он доверить рассказ о своих душевных переживаниях, по жизни знаменитый учёный был замкнут, не имел близких друзей и никогда не был женат.

В 12 лет он был определен в Грэнтемскую школу. Замкнутый и необщительный нрав, а также внутренняя сосредоточенность, настроили против него сверстников. С самого детства будущий учёный предпочитал мальчишечьим проказам занятия естественными науками. Он много читал, увлекался конструированием механических игрушек, решал математические задачи. Конфликтная ситуация с одноклассниками сподвигла самолюбивого Ньютона стать лучшим учеником школы .

Учёба в Кембридже

Овдовев, мать Ньютона очень рассчитывала на то, что 16-летний сын начнёт помогать ей в ведении фермерских дел. Но совместными усилиями школьного учителя, дяди мальчика и особенно Хэмфри Бабингтона, члена Тринити-колледжа, удалось убедить её в необходимости дальнейшего обучения. В 1661 году Ньютон сдаёт экзамен по латинскому языку и поступает в Колледж Св.Троицы при Кембриджском университете. Именно в этом учреждении в течении 30 лет он изучал науки, проводил опыты и совершал мировые открытия.

Вместо оплаты за учёбу в колледже, где юноша сначала жил в качестве студента-сайзера, ему приходилось выполнять некоторые поручения более богатых студентов и другие хозяйственные работы по университету. Уже через 3 года, в 1664 году, Ньютон сдаёт экзамены с отличием и получает повышенную ученическую категорию, а также право не только на бесплатное обучение, но и на стипендию.

Учеба так увлекала и вдохновляла его, что по воспоминаниям однокурсников, он мог забыть о сне и еде. По-прежнему занимался механикой и конструировал различные вещи и инструменты, увлекался математическими расчетами , астрономическими наблюдениями, исследованиями в области оптики, философией, даже теорией музыки и историей.

Решив посвятить свои годы жизни науке, он отказывается от любви и планов по созданию семьи. Юная воспитанница аптекаря Кларка, у которого в школьные годы он жил, тоже не вышла замуж и на всю жизнь сохранила нежную память о Ньютоне.

Первые шаги в научной деятельности

1664 год стал вдохновляющим для молодого учёного. Он составляет «Вопросник» из 45 научных задач и ставит перед собой цель все их решить.

Благодаря лекциям известного математика И. Барроу, Ньютон сделал своё первое открытие биноминального разложения, что позволило ему впоследствии вывести метод дифференциального исчисления, который применяется сегодня в высшей математике. Он успешно сдаёт экзамен и получает степень бакалавра .

Даже эпидемия чумы 1665 – 1667 годов не смогла остановить этот пытливый ум и заставить его сидеть без дела. На время разгула болезни, Ньютон уезжает домой, где продолжает заниматься научной деятельностью. Здесь, в домашнем уединении, делает большую часть своих великих открытий :

  • основывает базовые методики видов исчислений — интегрального и дифференциального;
  • выводит теорию цвета и даёт начало развитию оптической науки;
  • находит метод поиска корней квадратных уравнений;
  • выводит формулу разложения произвольной натуральной степени двучлена.

Важно! Знаменитая яблоня, наблюдения за которой помогли в открытии , была сохранена в качестве памятной скамьи учёного.

Важнейшие открытия

Исаак Ньютон краткая характеристика его деятельности. Это был не просто гений, известный учёный, а человек с разносторонними интересами во многих областях науки и техники. Чем он знаменит и что открыл. Увлечённый математик и физик одинаково хорошо разбирался как в точных науках, так и в гуманитарных. Экономика, алхимия, философия, музыка и история – во всех этих направлениях поработал гений его таланта . Вот лишь краткое описание великих открытий Исаака Ньютона:

  • вывел теорию движения небесных тел – определил, что планеты вращаются вокруг ;
  • сформулировал три важных закона механики;
  • вывел теорию света и цветовых оттенков;
  • построил первый в мире зеркальный ;
  • открыл Закон Тяготения , благодаря которому прославился.

По существующей легенде, Ньютон открыл знаменитый закон, наблюдая в своём саду падение яблок с яблони. Биограф знаменитого учёного Уильям Стьюкли описывает этот момент в книге, посвященной воспоминаниям о Ньютоне, которая была издана в 1752 году. По рассказу Стьюкли, именно упавшее с дерева яблоко навело его на мысль о притяжении космических тел и гравитации .

«Почему яблоки падают перпендикулярно к земле?» — подумал Ньютон и, размышляя, вывел новый закон. В саду Кембриджского университета студенты почитают и заботливо ухаживают за деревом, считающимся потомком той самой «яблони Ньютона».

Падение яблока послужило лишь толчком к знаменитому открытию. Ньютон шёл к нему долгие годы, изучая труды Галилея, Буллиальда, Гука , других астрономов и физиков. Ещё одним импульсом ученый считал «Третий Закон Келлера». Правда, современную трактовку Закона Всемирного Тяготения он составил несколько позже, когда изучил законы механики.

Прочие научные разработки

В основу классической механики заложены Законы Ньютона, важнейшие в области механики, были сформулированы в научном труде по математике началам философии, изданном в 1687 году :

  • первый Закон равномерного движения по прямой линии, если на тело не действует никаких иных сил;
  • второй Закон – , в дифференциальной форме описывающий влияние действующих сил на ускорение;
  • третий Закон – о силе взаимодействия двух тел на определенном расстоянии.

В настоящее время эти законы Ньютона являются аксиомой .

Астрономия

В конце 1669 года ученый получает в Тринити-колледже одну из самых престижных в мире должностей, именную лукасовскую профессуру математики и оптики. Кроме оклада в 100 фунтов, бонусов и стипендий, появляется возможность уделять больше времени собственной научной исследовательской деятельности. Занимаясь опытами и экспериментами по оптике и теории света, Ньютон создаёт свой первый телескоп-рефлектор.

Важно! Усовершенствованный телескоп стал основным инструментом для астрономов и навигаторов-мореплавателей того времени. С его помощью была открыта планета Уран, обнаружены другие галактики.

Изучая небесные светила через свой рефлектор, ученый вывел теорию небесных тел, определил движение планет вокруг Солнца. Пользуясь вычислениями своего рефлектора и применяя к изучению Библии научный подход, сделал собственное сообщение о конце света . Согласно его расчётам, это событие состоится в 2060 году.

Государственная деятельность

1696 год. Великий учёный занимает должность хранителя Монетного Двора, переехал в Лондон, где жил до 1726 года. Проведя финансовый учёт и установив порядок в документации, становится соавтором Монтегю по проведению денежной реформы.

В период его деятельности создаётся филиальная сеть Монетного Двора, в несколько раз увеличивается выпуск серебряной монеты. Ньютон внедряет технологию , позволяющую избавиться от фальшивомонетчиков.

1699 год. Становится управляющим Монетного Двора. На этом посту продолжает бороться с фальшивомонетчиками. Его действия на посту управляющего были такими же блестящими, как и во время научной деятельности. Благодаря проведенным реформам в Англии был предотвращён экономический кризис .

1698 год. был представлен доклад про экономическую реформу Ньютона. Будучи в Англии, царь Пётр три раза встречался со знаменитым профессором. В 1700 году в России была проведена денежная реформа, аналогичная английской.

1689 -1690 годы. Был представителем Кембриджского Университета в составе парламента страны. С 1703 по 1725 год занимал должность президента Королевского Общества.

Внимание! В 1705 году королева Великобритании Анна посвятила Исаака Ньютона в рыцари. Это был единственный случай в истории Англии, когда рыцарство присваивалось за научные достижения.

Биография Ньютона, его открытия

Жизнь великого ученого Исаака Ньютона

Завершение жизненного пути

Последние месяцы своей жизни профессор жил в Кенсингтоне. Великого учёного не стало 20 марта 1727 года. Он умер во сне и был похоронен на территории Вестминстерского аббатства в усыпальнице королей и самых выдающихся людей Англии. Проститься со знаменитым современником пришли все горожане. Похоронную процессию возглавлял сам лорд-канцлер , за которым в траурном шествии шли министры Великобритании.

Государственное общеобразовательное учреждение

Высшего профессионального образования

«Дальневосточный Государственный Университет»

Тема: «Философское значение открытий Ньютона»

Выполнил: Анисимов Н.А.

студент группы 726

Владивосток

Введение

Ньютон завершил научную революцию, и с его системой мира обретает лицо классическая физика. Но не только астрономические или оптические, а также математические открытия (он, независимо от Лейбница, изобрел дифференциальное и интегральное исчисление) обессмертили его имя. Ньютон занимался также актуальными теологическими проблемами, вырабатывая точную методологическую теорию. Без правильного понимания идей Ньютона мы не сможем понять вполне ни значительной части английского эмпиризма, ни Просвещения, особенно французского, ни самого Канта. Действительно, как мы увидим ниже, «разум» английских эмпириков, лимитируемый и контролируемый «опытом», без которого он уже не может свободно и по желанию перемещаться в мире сущностей, - это «разум» Ньютона.

Наиболее знаменитое сочинение Ньютона - «Математические начала натуральной философии» впервые издано в 1687 г. «Опубликование „Начал...“ было одним из наиболее важных событий во всей физике. Эту книгу можно считать кульминацией тысячелетних усилий понять динамику вселенной, физику движущихся тел» (I. В. Cohen).

Целью реферата является раскрытие философского значения открытий Ньютона.

Жизнь и творчество.

Исаак Ньютон родился в 1642 г. В 1661 г. он поступил в колледж Св. Троицы в Кембридже, где нашел поддержку у преподавателя математики Исаака Барроу (1630-1677), автора известных «Лекций по математике» и сочинений по греческой математике. Барроу оценил выдающиеся способности своего ученика, который очень быстро овладел всеми основными математическими знаниями. К концу обучения Ньютон постиг исчисление бесконечно малых величин и использовал его при решении некоторых проблем аналитической геометрии. Он передал тетрадь со своими заметками Барроу и некоторым друзьям для прочтения.

В 1665 г. на два года из-за чумы Ньютон, как и многие другие преподаватели и студенты, вынужденно покидает Кембридж. Он вернулся в Вулсторп, в маленький каменный домик, уединенно расположенный в сельской глуши, чтобы предаться там размышлениям. Ньютон в старости так вспоминал о своей необычной работе в Вулсторпе: «Все это произошло в два чумных года, 1665 и 1666, потому что в это время я находился в самой творческой форме и занимался математикой и философией больше, чем когда бы то ни было впоследствии» («философия», или «натуральная философия», Ньютона - это то, что мы сегодня называем «физикой»).

В 1669 г. Барроу перешел на кафедру теологии и передал кафедру математики молодому Ньютону. Ньютон завершил свои опыты по разложению белого цвета с помощью призмы. Он представил соответствующий доклад в 1672 г. в Королевское общество; этот доклад под названием «Новая теория света и цветов» был опубликован в «Философских трудах» (PhilosophicalTransactions) Королевского. общества. В этой работе - как и в последующей в 1675 г. - Ньютон формулирует дерзкую теорию корпускулярной природы света, согласно которой световые явления находили объяснение в эмиссии частиц разной величины: самые маленькие из этих частиц давали фиолетовый цвет, а самые большие - красный. Такие идеи «порождали среди докучливых философов-догматиков целую бурю полемики, что раздражало Ньютона, тщетно призывавшего не видеть в этом новой метафизики света, а лишь гипотезу (как сказали бы сегодня, „модель“), назначение которой - интерпретировать и систематизировать ряд экспериментальных данных» (Дж. Прети). Корпускулярная теория света вступала в состязание с волновой теорией, выдвинутой голландским физиком, последователем Декарта Христианом Гюйгенсом (1629-1695). Рассерженный этой полемикой, Ньютон опубликовал свою «Оптику» только в 1704 г. Его работа принесла ему в 1672 г. членство в Королевском обществе.

В 1671 г. французский ученый Жан Пикар (1620-1682) выработал наилучший способ обмера Земли; в 1679 г. Ньютон познакомился с техникой расчета диаметра Земли Пикара и возобновил работу над своими заметками о гравитации; вновь выполнил расчеты (которые в Вулсторпе не удавались), и на этот раз благодаря новой технике Пикара расчеты получились, так что идея гравитации стала, таким образом, научной теорией. Однако, еще находясь под впечатлением предыдущей острой полемики, он не опубликовал своих результатов. Он продолжал писать лекции, которые были опубликованы в 1729 г. под названием «Лекции по оптике», а также лекции по алгебре, увидевшие свет в 1707 г. под названием «Всеобщая арифметика».

В начале 1684 г. известный астроном Эдмунд Галлей (1656-1742) встретился с сэром Кристофером Реном (1632-1723) и Робертом Гуком (1635-1703) с тем, чтобы обсудить проблему движения планет. Гук утверждал, что законы движений небесных тел следуют закону силы, обратно пропорциональной квадрату расстояния. Рен дал Гуку два месяца на формулировку доказательства закона. Но Гук пренебрег этим поручением.

В августе Галлей отправился в Кембридж, чтобы узнать мнение Ньютона. На вопрос Галлея, какой должна быть орбита планеты, притягиваемой Солнцем с гравитационной силой, обратно пропорциональной квадрату расстояния, Ньютон ответил: «Эллипс». Обрадованный Галлей спросил у Ньютона, как ему удалось это узнать. Ньютон отвечал: после соответствующих расчетов. Тогда Галлей попросил показать ему эти расчеты, но Ньютон не смог найти их и пообещал прислать позже, что и сделал. Кроме того, он написал работу «О движении тел», которую послал Галлею. Последний сразу понял важность работы Ньютона и убедил его написать и обнародовать трактат. Так появился самый большой шедевр в истории науки - «Математические начала натуральной философии».

Ньютон принялся за работу в 1685 г. В апреле 1686 г. он направил рукопись первой части в Королевское общество, в протоколах которого находим следующую запись, датированную 28 апреля: «Доктор Винсент представил Обществу трактат под названием „Математические начала натуральной философии“, который господин Исаак Ньютон посвящает Обществу и в котором предлагается математическое доказательство гипотезы Коперника в изложении Кеплера, с объяснением всех феноменов небесных тел с помощью единой гипотезы гравитации к центру Солнца, сила которой уменьшается обратно пропорционально квадрату расстояния от центра». Позже написаны вторая и третья части книги. Сам Галлей взялся за издание работы. Но тут возник спор с Гуком, который отстаивал свой приоритет в открытии закона силы, обратно пропорциональной квадрату расстояния. Ньютон оскорбился; он грозил, что не отдаст в печать третью часть работы, в которой говорится о системе мира. Затем спор улегся, и Ньютон вставил в работу примечание, в котором указал, что закон обратной пропорции был уже ранее предложен Реном, Гуком и Галлеем.

«Начала...» появились в 1687 г. Два года спустя Ньютон был избран представительским депутатом университета Кембриджа; в этот период он знакомится с Джоном Локком, с которым завязывается искренняя и прочная дружба. Он продолжал свои исследования бесконечно малых величин (опубликовав часть работ в 1692 г.), заинтересовался химией, «начав с места, на котором ее оставил Бойль, и восприняв его концепции; но случившийся пожар разрушил лабораторию и уничтожил многочисленные заметки. Ньютон, который к этому времени уже испытывал значительное нервное истощение, пережил тяжелый кризис, граничивший с безумием (1692-1694), от чего так и не оправился до конца жизни. С этого момента история Ньютона-ученого практически кончается» (Дж. Прети). Он публиковал неизданные труды и переиздавал изданные ранее. В 1696 г. он был назначен директором Монетного двора; три года спустя стал управляющим, в знак заслуг. В 1703 г. избран президентом Королевского общества. В 1704 г. он опубликовал «Оптику», в 1713 г. вышло второе издание «Начал...», в 1717 г. - второе издание «Оптики». В феврале 1727 г. Ньютон из Кенсингтона направился в Лондон, чтобы председательствовать на одном из заседаний Королевского общества. Вернувшись в Кенсингтон, он почувствовал себя очень плохо. Ему не удалось преодолеть кризис, и он умер 20 марта 1727 г. Погребен Ньютон в Вестминстерском аббатстве. На его похоронах присутствовал Вольтер, способствовавший распространению идей Ньютона во Франции.

«Правила философствования» и «онтология», которую они предполагают.

В третьей книги «Начал...» Ньютон устанавливает четыре «правила философского рассуждения». Речь идет, конечно, о методологических правилах. Поскольку правила, показывающие, как искать, предполагают, что мы знаем, что должны искать, они переплетены с тезисами метафизического порядка о природе и структуре вселенной.

«Правило I. Не следует допускать причин больше, чем достаточно для объяснения видимых природных явлений». Это первое методологическое правило есть принцип экономии в использовании гипотез, аналог бритвы Оккама в отношении объяснительных теорий. Но почему мы должны поставить себе целью выработку простых теорий; почему не должны усложнять гипотетический аппарат наших объяснений? Ответ Ньютона таков: «Природа ничего не делает напрасно, и излишне делать с помощью многого то, что можно сделать малым; ведь природа проста и не роскошествует излишними причинами вещей». Онтологический постулат простоты природы утверждает первое методологическое правило Ньютона.

С первым правилом тесно связано правило II. «Одни и те же явления мы должны, насколько возможно, объяснять теми же причинами. Например, дыхание человека и животного; падение камней в Европе и в Америке; свет от огня в кухне и свет от Солнца; отражение света на Земле и на планетах». Это правило выражает второй онтологический постулат - единообразие природы. Никто не может контролировать отражение света на планетах, но на основании того факта, что природа ведет себя схожим образом на Земле и на других планетах, мы можем сказать это же и о природе света.

«Правило III. Свойства тел, не допускающие ни постепенного увеличения, ни постепенного уменьшения и проявляющиеся во всех телах в пределах наших экспериментов, должны рассматриваться как универсальные». Это правило также базируется на онтологическом постулате единообразия природы. Ньютон пишет: «Поскольку мы узнаём о свойствах тел только посредством экспериментов, мы должны считать универсальными все те свойства, которые в экспериментах носят устойчивый характер, и те, которые не могут быть ни уменьшены, ни устранены. Конечно, мы не должны отказываться от очевидных экспериментов ради мечтаний и пустых фантазий нашего созерцания и пренебрегать аналогиями в природе, которая проста и находится в согласии с собой». Итак, природа проста и единообразна. Эти два метафизических столпа поддерживают методологию Ньютона. Далее ученый переходит к установлению фундаментальных свойств тел: протяженность, твердость, непроницаемость, движение. К установлению перечисленных свойств мы приходим с помощью наших чувств.

«Протяженность, твердость, подвижность и сила инерции целого являются результатом протяженности, твердости, непроницаемости, подвижности и силы инерции частей; из этого мы заключаем, что даже самые маленькие части всех тел также должны быть протяженны, тверды, непроницаемы, подвижны и обладать собственной инерцией. И это - основа всей философии». Речь идет о корпускулярности. Ньютон не избежал важного вопроса: частицы, из которых состоят материальные тела, могут делиться далее или нет? Математически любая часть всегда доступна дальнейшему делению, но достижимо ли это и физически? Вот какую аргументацию выдвигает по этому поводу Ньютон: «Деление тел на части, соединенные между собой, доступно наблюдению; но и в частях, остающихся неделимыми, наш ум в состоянии различить еще меньшие частицы, что доказуемо математически. Способны ли мы с точностью определить, что эти неделимые части действительно могут быть делимы далее природными средствами? Если в результате эксперимента мы получим доказательство, что какая-либо неразделенная частица, разорвав твердое тело, распадется, мы сможем заключить благодаря этому правилу, что неразделенные частицы так же, как и разделенные, могут подвергаться делению до бесконечности». Итак, математическая уверенность соседствует с фактологической неопределенностью. Но эта неопределенность не распространяется на силу тяготения. «Если очевидно благодаря экспериментам и астрономическим наблюдениям, что все тела вокруг Земли притягиваются к ней пропорционально количеству материи, содержащейся в каждом из них; что подобным же образом и Луна притягивается к Земле, пропорционально ее весу; что, с другой стороны, наше море притягивается к Луне; что все планеты притягиваются одна к другой и что кометы в равной мере притягиваются Солнцем, - тогда, вследствие этого правила, мы должны допустить, что все тела обладают способностью взаимного притяжения. Это позволяет получить закон всемирного тяготения тел, чего нельзя сказать об их непроницаемости, относительно чего мы не располагаем никаким экспериментом или другим способом наблюдения, который мы могли бы применить к небесным телам. И я не утверждаю, что сила тяжести является существенным свойством тел; под понятием vis insita (присущая сила) я разумею только их силу инерции. Она неизменна. Сила тяжести уменьшается пропорционально удалению тел от Земли».

Природа проста и единообразна. На основе чувств, т.е. путем наблюдений и экспериментов, можно установить некоторые из основных свойств тел: протяженность, твердость, непроницаемость, подвижность, силу инерции целого, всемирное тяготение. И эти свойства устанавливаются с помощью единственной, по мнению Ньютона, действенной процедуры, обеспечивающей формирование научных суждений: индуктивного метода. Тем самым мы подошли к правилу IV. В экспериментальной философии суждения, выведенные путем общей индукции, следует рассматривать как истинные или очень близкие к истине, несмотря на противоположные гипотезы, которые могут быть вообразимы, - до тех пор, пока не будут обнаружены другие явления, благодаря которым эти суждения или уточнят, или отнесут к исключениям".

Порядок мира и существование Бога.

«Правила философских рассуждении» сформулированы в начале третьей книги «Начал...». А в конце той же книги мы находим «Общее поучение» (Scholium generale), где Ньютон соединяет результаты своих научных исследований с суждениями философско-теологического порядка. Система мира - большой механизм. Законы функционирования отдельных его частей выявляются путем индукции через наблюдение и эксперимент. Но откуда же берет начало мировая система, упорядоченная и узаконенная? Ньютон отвечает: «Эта удивительная система Солнца, планет и комет могла появиться только по проекту премудрого и могущественного Существа. И если неподвижные звезды являются центрами других аналогичных систем, все они, образованные по идентичному намерению, должны подчиняться господству Единого; особенно потому, что свет неподвижных звезд имеет ту же природу, что и свет Солнца, ведь свет обладает проходимостью от одной системы к другим, а чтобы неподвижные звезды не падали из-за тяжести одна на другую, Он поместил эти системы на огромном расстоянии одна от другой».

Итак, порядок мира обнаруживает намерение премудрого и могущественного Существа. Это Существо «управляет всеми вещами не как мировая душа, но господин всего; и благодаря этому управлению Его обычно называют Господь Бог Вседержитель, или Пантократор… Высший Бог - вечное существо, бесконечное, абсолютно совершенное; но существо, хотя и совершенное, но без господства, не может быть названо Господь Бог… Из Его праведного господства следует, что это живое, умное и сильное Существо; а из других Его совершенств - что Он вечен и бесконечен, всемогущ и всезнающ».

Порядок мира со всей очевидностью демонстрирует существование Бога, в высшей степени премудрого и могущественного. Но что еще, помимо того что Он существует, мы можем утверждать о Боге? «Как слепой не имеет никакого представления о цвете, так мы, - отвечает Ньютон, - не имеем никакого представления о том, каким образом мудрейший Бог воспринимает и понимает все сущее. Он лишен тела и телесной формы, вследствие чего Его нельзя ни видеть, ни слышать, ни коснуться». О природных объектах, продолжает Ньютон, мы знаем то, что констатируют наши чувства: форму и цвет, поверхность, запах, вкус и т.д.; но никто из нас не знает, «что такое сущность вещи», «тем более сущность Бога». Что Он существует, что Он в высшей степени премудрый и совершенный, вытекает из мировой гармонии.

Итак, существование Бога может быть доказано философией природы на основании космического порядка. Однако теологические интересы Ньютона гораздо шире, нежели можно представить из вышеприведенных отрывков.

Среди книг, оставленных Ньютоном своим наследникам, мы встречаем труды отцов Церкви, дюжину различных изданий Библии и много других книг на религиозную тему. Закончив «Начала...», Ньютон обратился к серьезному изучению Священного Писания и в 1691 г. вел интенсивную переписку с Джоном Локком, с которым, среди прочего, обсуждал пророчества Даниила. После смерти Ньютона был опубликован его «Исторический отчет о двух значительных искажениях Священного Писания», а также «Наблюдения над пророчествами Даниила и Апокалипсисом св. Иоанна». Эта последняя работа далась ему особенно трудно. В ней он «пытался соединить пророчества с историческими событиями, которые за ними следовали; например, упоминаемый Даниилом зверь имеет десять рогов, посреди которых появляется маленький рог. Ньютон идентифицировал эти рога с разными королевствами и решил, что самый маленький рог символизировал Католическую Церковь. В точности его ссылок по поводу истории Церкви проявляется глубокая эрудиция» (Э. Н. Да Коста Андраде).

Великий мировой механизм.

Великий мировой механизм. «Начала...» - как в том, что касается метода, так и в отношении содержания - завершают научную революцию. Начатая Коперником, она нашла в Кеплере и Галилее двух наиболее выдающихся представителей. Ньютон, как указывает Койре, соединяет в органическое целое наследие Декарта и Галилея, Бэкона и Бойля; как для Бойля, так и для Ньютона «книга природы написана корпускулярными буквами (терминами), но эти корпускулы соединяются чисто математическим картезианским синтаксисом, что придает смысл ее тексту». Буквы алфавита, которым написана книга природы, - это бесконечное множество частиц, движения которых регулируются синтаксисом, законами движения и законом всемирного тяготения.

Вот три ньютоновских закона движения, которые представляют собой классическое выражение основ динамики. Первый - закон инерции, над которым работали Галилей и Декарт. Ньютон пишет: «Всякое тело пребывает в состоянии покоя или равномерного прямолинейного движения до тех пор, пока действующие на него силы не изменят это состояние». Ньютон иллюстрирует этот фундаментальный принцип следующим образом: «Пуля летит, пока ее не остановит сопротивление воздуха или пока не упадет под действием силы тяготения. Юла… не прекратит своего вращения, пока ее не остановит сопротивление воздуха. Более крупные тела планет и комет, находясь в пространствах более свободных и с меньшим сопротивлением, сохраняют свои движения вперед и одновременно по кругу на гораздо более продолжительное время».

Второй закон, сформулированный уже Галилеем, гласит: «Произведение массы тела на его ускорение равно действующей силе, а направление ускорения совпадает с направлением силы». Формулируя закон, Ньютон рассуждает: «Если определенная сила порождает движение, сила, в два раза большая, породит в два раза большее движение, сила, умноженная втрое, - утроенное движение, и неважно, приложена эта сила вся сразу, одним ударом, или постепенно и последовательно. И это движение, если тело уже двигалось, прибавляется к нему, или вычитается, если эти движения противоположны друг другу; или же добавляется косвенно, если движения не расположены на одной прямой, так что рождается новое движение, направление которого определяется направлением двух исходных движений». Эти два закона, в совокупности с третьим, который будет изложен ниже, составляют основу классической механики, изучаемой в школе.

Третий закон, сформулированный Ньютоном, утверждает, что «действию всегда соответствует равное противодействие», или: действия двух тел друг на друга всегда равны по величине и направлены в противоположные стороны. Этот принцип равенства между действием и противодействием Ньютон иллюстрирует так: «Любая вещь, которая давит на другую вещь или тянет ее, испытывает в равной мере давление или притягивание со стороны этой другой вещи. Если надавить на камень пальцем, то и палец будет испытывать давление камня. Если лошадь тянет за веревку камень, то и лошадь испытывает притягивание назад, в направлении камня».

Таковы законы движения. Однако состояния покоя и равномерного прямолинейного движения могут быть определены только относительно других тел, которые находятся в покое или в движении. Но соотносить с другими системами нельзя до бесконечности, Ньютон вводит два понятия (которые станут объектом дискуссий) - абсолютного времени и абсолютного пространства. «Истинное и математически абсолютное время протекает безотносительно к чему-либо вне его, иначе оно именуется длительностью. Относительное, кажущееся или обыденное время есть или точная, или изменчивая, постигаемая чувствами, внешняя, совершаемая при посредстве какого-либо движения, мера продолжительности, употребляемая в обыденной жизни вместо истинного математического времени, как-то: час, день, месяц, год». «Абсолютное пространство, по своей природе лишенное соотнесения с чем-либо вне его, всегда остается подобным себе самому и неподвижным...» Эти два концепта - абсолютное время и абсолютное пространство - лишены оперативного значения. Против неконтролируемых эмпирических понятий высказался Эрнст Мах, назвавший в своей книге «Механика в историко-критическом аспекте» абсолютное пространство и абсолютное время Ньютона «концептуальными чудовищами».

Внутри абсолютного пространства, которое Ньютон называет также sensoriumDei, соединение тел осуществляется по закону всемирного тяготения, изящно изложенному в третьей книге «Начал...». После краткого изложения содержания двух первых книг Ньютон заявляет, что на основе тех же самых принципов он намерен теперь продемонстрировать структуру мировой системы, и делает это далее с такой скрупулезностью, что сделанное в науке в последующие двести лет наиболее выдающимися умами можно считать расширением и обогащением его труда

С помощью закона всемирного тяготения Ньютон приходит к единому принципу объяснения бесконечного множества явлений. Сила, притягивающая к земле камень или яблоко, имеет ту же природу, что и сила, удерживающая Луну близ Земли, а Землю - близ Солнца; присутствием той же силы объясняются приливы - как комбинированный эффект притяжения Солнца и Луны, воздействующий на массу морской воды. На основе закона тяготения «Ньютон смог объяснить движения планет, их спутников, комет вплоть до малейших деталей, а также приливы и отливы - труд, уникальный по своей грандиозности» (А. Эйнштейн). Из него «вырисовывается единая картина мира и реальный прочный союз физики земной и физики небесной. Окончательно рухнули догмы о существенном различии между землей и небесами, механикой и астрономией, разбился „миф о круговом движении“, сковывавший в течение более чем тысячи лет развитие физики и даже ход мыслей Галилея. Небесные тела движутся по эллиптическим орбитам, ибо на них воздействует некая сила, постоянно уклоняющая их от прямой линии, по которой они бы продолжали свое движение по инерции» (Паоло Росси).

Механика Ньютона как программа исследований. В конце «Общего поучения» Ньютон предлагает четкую «программу исследований»: с помощью силы тяготения она объяснит не только физические явления - такие, как падение тяжелых тел, орбиты небесных тел и приливы, - ученый считает, что благодаря ей можно реально понять электрические явления, оптические и даже физиологические. К сожалению, добавляет Ньютон, «об этом невозможно сказать в нескольких словах, и мы не располагаем достаточным количеством экспериментов для точного определения и доказательства законов, по которым действует этот электрический упругий дух». Ньютон попытался сам реализовать программу в области оптики: «Когда Ньютон предположил, что свет состоит из инертных частиц, - пишет Эйнштейн, - он был первым, кто сформулировал основу, из которой оказалось возможно дедуцировать большое число явлений посредством логико-математических рассуждений. Он надеялся, что со временем фундаментальные основы механики дадут ключ к пониманию всех явлений, так думали и его ученики вплоть до конца XVIII в.». Механика Ньютона стала одной из наиболее мощных и плодотворных исследовательских программ в истории науки: после Ньютона для научного сообщества «все явления физического порядка должны были быть соотносимы с массами по законам движения Ньютона». Реализация программы Ньютона продолжалась довольно долго, пока не натолкнулась на проблемы, для разрешения которых потребовалась новая научная революция.

Физика Ньютона исследует не сущности, а функции; она не доискивается до сути тяготения, но довольствуется тем, что оно есть на самом деле и что им объясняются движения небесных тел и земных морей. И однако Ньютон замечает в работе «Оптика»: «Первопричина, разумеется, не является механической». Ограниченное и контролируемое опытом рассуждение и деизм - две основные составляющие наследства, которое эпоха Просвещения получит от Ньютона, в то время как материалисты XVIII в. изберут в качестве теоретической базы механицизм Декарта. Для последователей Декарта в мире нет пустоты, для Ньютона это не так: тела взаимодействуют «на расстоянии». Последователи же Декарта и Лейбниц увидят в этих таинственных силах, действующих на неограниченных расстояниях, возврат к старым «скрытым свойствам».

Заключение

Ньютон рассматривал знание как власть над вещами и как откровение Божие; он говорил, что писал «Начала» «с намерением не умалить Творца, но подчеркнуть и доказать могущество и попечение о мире высшего существа». Влияние Ньютона на философию восемнадцатого столетия оказалось совсем не таким, как он рассчитывал. Особую роль в преобразовании ньютоновской метафизики сыграл Дэвид Юм, исключив Бога из картины мироздания, а всего столетие спустя Лаплас на вопрос о Боге заметил: «Я не нуждаюсь в этой гипотезе». Когда Ньютон разрабатывал механистическую картину мира с атомами, пустотой и дальнодействием, он ни в коей мере не хотел показать, что мир самодостаточен. Он никогда бы не согласился с деистической карикатурой на Бога, который приводит мир в движение, как будто заводит часы, и позволяет идти ему собственным ходом, полемизируя с ней так же яростно, как некогда с вихревой космологией картезианства. Бог Ньютона был имманентен, постоянно и прямо ответствен за поддержание упорядоченного хода вещей. Иными словами, Ньютон ни за что не поддержал бы «ньютонианство» в его позднейших воплощениях.

Литература

1. Д. Антисери, Дж. Реале. Западная философия от истоков до наших дней.

2. Г. Скирбекк, Н. Гилье. История философии.

3. В. Карцев “Ньютон”, серия «Жизнь замечательных людей».

Глава III. Философия

вляется ли «философия», фигурирующая в названии «Начал», философией в более общем, обычном смысле? Специфически английский смысл этого слова (вспомним о «философском инструменте» - термометре) отразился здесь несомненно. Но может быть, в «Началах» такой специфический смысл несколько расширяется и «философия» приближается к философии без кавычек?

Положительный ответ на этот вопрос означал бы, что традиция сведения философии к результатам индукции представляет собой элемент необратимого развития философской мысли в целом. Но речь идет о другом - о линии, соединяющей эмпиризм и рационализм XVI - XVII вв. С этой линией синтеза эмпиризма и рационализма и связано философское, более общее, чем собственно физические идеи, содержание «Начал».

В первую очередь это касается «физики принципов». С. И. Вавилов, раскрывая смысл этого понятия, отрицал тождество «физики принципов» с чистым эмпиризмом и сближал ее с позднейшими воплощениями научного сенсуализма, с «математической экстраполяцией», принципам наблюдаемости и т. д. (см. 7, 3). Если же идти от «физики принципов» не вперед, к нашему времени, а назад, к индуктивной философии Бэкона и сенсуализму Локка, то мы придем к проблеме отношения ньютонианства к рационализму XVII в.

Обратимся к принадлежащей самому Ньютону характеристике его метода.

В третьей книге «Начал» Ньютон поместил уже известные нам «Regulae philosophandi» - «Правила философствования», или, как перевел А. Н. Крылов, «Правила умозаключений в физике». Первое правило гласит: «Не должно принимать в природе иных причин сверх тех, которые истинны и достаточны для объяснения явлений». Три следующих правила требуют, чтобы одинаковым явлениям приписывались одинаковые причины, чтобы свойства, присущие всем телам, подвергнутым исследованию, принимались за общие свойства материальных тел и, наконец, чтобы законы, индуктивно выведенные из опыта, считались верными, пока не обнаружатся явления, которым они будут противоречить (этому правилу должно следовать, говорит Ньютон, чтобы доводы индукции не уничтожались предположениями). Последний из перечисленных принципов, казалось бы, действительно был абсолютным правилом ньютоновской механики, которая и самому Ньютону, и его последователям представлялась лишенной гипотетических посылок, целиком основанной на фактах и именно поэтому окончательной, вечной, абсолютной.

Но в действительности «Начала» не могли быть созданы без понятий, далеко не сводившихся к той простой систематизации опыта, которую называли индукцией. Ньютон рассматривал результаты наблюдений с точки зрения бесконечности - исходя из презумпции подчиненности бесконечного или по крайней мере неопределенно большого множества процессов закономерностям, найденным в результате конечного числа наблюдений. Когда обнаруженные на Земле законы механики исходя из астрономических наблюдений распространяли на расстояния в сотни световых лет, полагали, что эти законы бесконечно применимы к недоступным наблюдению объектам. С другой стороны, классическая механика исходила из предпосылки, что законы, установленные при наблюдении макроскопических тел, распространяются и на микроскопические процессы. Но такая инфинизация опиралась, явно или неявно, на представления, модели, чуждые индуктивному методу.

Чистый эмпиризм так же невозможен, как и чистый рационализм. Наука всегда сочетала «внешнее оправдание» с «внутренним совершенством», Сенсус с Логосом. Эмпирия имеет дело с здесь-теперь - если говорить о времени, то с настоящим, как с нулевой по длительности гранью между прошлым, которого уже нет, и будущим, которого еще нет. Познание означает переход от здесь-теперь к вне-здесь-теперь (см. 12, 3-25). Дифференциальное представление о мире как бы включает в данную точку стремящиеся к ней другие точки, в данное мгновение - стремящиеся к нему другие мгновения. Понятие предела, связывающее пребывание с движением, явно основано на синтезе Сенсуса и Логоса. Сенсуальная постижимость и пространственно-временная длительность составляют основу познания субстанции. В реализации такого логико-эмпирического познания, в разработке пространственно-временной картины мира заключается необратимая эволюция познания.

Индуктивизм Бэкона и сенсуализм Локка, несомненно, входили в число источников «физики принципов». Но если рассматривать «физику принципов» вместе с ее источниками как этап необратимого развития познания, то Бэкон и Локк оказываются предшественниками синтеза сенсуализма и рационализма, перехода к понятиям, одновременно являющимся элементами Логоса и элементами Сенсуса.

Предшественником такого синтеза был и Декарт. Современная ретроспекция, современные примеры единства «внешнего оправдания» и «внутреннего совершенства» заставляют отказаться от традиционного противопоставления Ньютона как создателя индуктивистской «физики принципов» Декарту с его «физикой гипотез». Не отказаться полностью, но увидеть в этом противопоставлении оттенки, стороны, акценты единого метода науки. «Начала философии» Декарта были эпохальным по своему значению переходом от иллюзии чистого Логоса к реальному бытию протяженной материи как объекту познания. Разум постигает протяженную природу. У Декарта акцент стоит на разуме. Протяженная природа, которую объясняет разум, оказывается тождественной пространству. Отсюда - трудность: тела не могут быть выделены из окружающей среды, из пространства. Эта трудность была преодолена динамизмом, наделившим тела негеометрическими свойствами. Но такой переход означал, что рационализм вышел за пределы чистой мысли, включив в себя то, что было сделано Бэконом и Локком. Таким синтезом - внутренним, скрытым, но несомненным - оказалась «физика принципов» Ньютона. В «Математических началах натуральной философии» объектом исследования становятся сенсуально постижимые тела, отличные от пространства, испытывающие воздействие сил. Следующим шагом сенсуализации пространства стала идея физического поля, концепция Фарадея и Максвелла. В XX в. был сделан еще более решительный шаг в сторону такой сенсуализации: пространство, по выражению Г. Вейля, перестало быть «наемной казармой» для тел, в общей теории относительности оно стало «участником» их бытия, а в квантовой механике сами тела - элементарные частицы - оказались концентрациями поля.

Ньютон, конечно, не ставил своей задачей соединить идеи Декарта с идеями Бэкона и Локка. «Начала философии» Декарта противоречили главному стремлению Ньютона - стремлению к однозначности. Кроме того, Ньютону, по всей вероятности, вообще не были свойственны размышления об идейных корнях собственных концепций. Ведь ученый часто считал свои взгляды простой констатацией фактов. Эйнштейн начал свою Спенсеровскую лекцию в Оксфорде («О методе теоретической физики») словами: «Если вы хотите узнать у физиков-теоретиков что-нибудь о методах, которыми они пользуются, я советую вам твердо придерживаться следующего принципа: не слушайте, что они говорят, а лучше изучайте их работы. Тому, кто в этой области что-то открывает, плоды его воображения кажутся столь необходимыми и естественными, что он считает их не мысленными образами, а заданной реальностью. И ему хотелось бы, чтобы и другие считали их таковыми» (24, 181).

Спенсеровская лекция Эйнштейна - образец очень точной характеристики действительного метода научного исследования. Современный ученый, представитель неклассической науки, рассматривает свой метод и его результаты как нечто отнюдь не окончательное, подлежащее развитию, оцениваемое с позиций предвидимого будущего. Эйнштейн говорит, что взгляд ученого на прошлое и настоящее науки «зависит от того, с чем он связывает надежды на будущее и что ставит своей целью в настоящем...» (там же). Прогнозы и цели определяют оценку теории, ее вклада в необратимое движение науки. Для биографии ученого такие субъективные оценки чрезвычайно важны, они связаны с личным, эмоциональным подтекстом творчества. Объективная оценка результатов научного творчества ретроспективна. Такая оценка зависит от того, насколько осуществились «надежды на будущее», насколько достигнуты «цели в настоящем».

Лекция Эйнштейна посвящена соотношению содержания научных теорий и совокупности опытных фактов. Древняя Греция, говорит Эйнштейн, дала науке идею логической системы, «теоремы которой вытекали друг из друга с такой точностью, что каждое из доказанных ею предложений было абсолютно несомненным». Речь идет о геометрии Эвклида. Конечно, она была необратимым шагом познания, и именно поэтому сохраняется ее эмоциональный подтекст. «Этот замечательный триумф мышления придал человеческому интеллекту уверенность в себе, необходимую для последующей деятельности. Если труд Эвклида не смог зажечь ваш юношеский энтузиазм, то вы не рождены быть теоретиком» (там же).

Ньютон был рожден теоретиком, и Эвклид, конечно, зажег его юношеский энтузиазм, просто его научный темперамент, в такой громадной степени соответствовавший очередной ступени познания - созданию однозначной картины мира,- исключал эмоциональные излияния. Но такой же энтузиазм был рожден великими открытиями и обобщениями первой половины XVII в. Они в каком-то смысле противостояли триумфу чисто теоретического мышления, исключая иллюзию, будто логическое мышление является самостоятельным путем познания.

Этот путь был необходим, но не достаточен для постижения действительности. «...Прежде чем человечество созрело для науки, охватывающей действительность, необходимо было другое фундаментальное достижение, которое не было достоянием философии до Кеплера и Галилея. Чисто логическое мышление не могло принести нам никакого знания эмпирического мира. Все познание реальности исходит из опыта и возвращается к нему. ...Именно потому, что Галилей сознавал это, и особенно потому, что он внушал эту истину ученым, он является отцом современной физики и фактически современного естествознания вообще» (там же).

Эта историко-философская и историко-научная концепция Эйнштейна освещает проблему соотношения теоретического мышления и эмпирии в философии и науке XVII в., и в частности проблему соотношения индуктивного знания и «физики принципов» Ньютона. Творчество Галилея, Кеплера и вся наука первой половины и середины XVII в. - это отнюдь не отказ от Логоса в пользу Сенсуса, отнюдь не индуктивизм. «Все познание реальности исходит из опыта и возращается к нему», ни на минуту не теряя своей логической структуры. Чистый эмпиризм - такая же иллюзия, как и чисто логическое постижение бытия. Но если наука до Возрождения ставила акцент на Логосе, а научная революция XVI-XVII вв. перенесла акцент на Сенсус, то наука XX в. акцентирует единство того и другого. В той же Спенсеровской лекции Эйнштейн указывает на общую теорию относительности для подтверждения зависимости логико-математических конструкций от опыта. Как только эти конструкции начинают претендовать на реальное значение, они теряют свой чисто логический характер. Во всякой теории требуется, чтобы из некоторых фундаментальных принципов были строго логически выведены некоторые следствия. Общая теория относительности, допустив, что мировое пространство подчинено не геометрии Эвклида, а геометрии Римана, объяснила ряд астрономических явлений с большей точностью, чем ньютонова теория тяготения. Тем самым геометрия перестает быть чисто логической дисциплиной и возвращается к своим эмпирическим истокам. Геометрические законы привлекаются на суд эмпирии, воплотившись в экспериментально проверяемые концепции. Рассматривая место логического мышления и опыта в системе теоретической физики, Эйнштейн заключает: «...логическое мышление определяет структуру этой системы; то, что содержит опыт и взаимные соотношения опытных данных, должно найти свое отражение в выводах теории. В том, что такое отражение возможно, состоит единственная ценность и оправдание всей системы, и особенно понятий и фундаментальных законов, лежащих в ее основе. В остальном эти последние суть свободные творения человеческого разума, которые не могут быть априори оправданы ни природой этого разума, ни каким-либо другим путем» (там же, 182-183).

Это замечание о «свободных творениях человеческого разума» очень важно. Для средневековой мысли существовало априорное оправдание разума, выведенное из его провиденциальной гармонии и из его совпадения с ratio scripta. Для «физики принципов» разум конструирует фундаментальные понятия путем простого обобщения наблюдений, простой индукции, заключения от частного к общему. Общая теория относительности показала, что опыту могут соответствовать различные системы фундаментальных понятий и, следовательно, «всякая попытка логического выведения основных понятий и законов механики из элементарного опыта обречена на провал» (там же, 184).

Иллюзорность прямого выведения фундаментальных понятий и законов из фактов могла быть в полной мере показана лишь неклассической физикой, но, как замечает Эйнштейн (с удивительным историко-научным чутьем), уже сам Ньютон не мог не чувствовать произвольности допущений абсолютного пространства и дальнодействия. Эти понятия, как и критика абсолютного пространства и дальнодействия в XVIII-XIX вв., были залогом последовавшего гораздо позже отказа науки от однозначных, вытекающих якобы непосредственно из опыта фундаментальных понятий.

Вернемся к ньютоновым «Правилам философствования». Ньютон утверждает, что законы, выведенные из опыта, должны считаться истинными, пока им не противоречат другие наблюдения. Это еще отнюдь не принципиальное ограничение тезиса о чисто индуктивной природе законов, но это - допущение некоторой изменчивости уже установленных законов. Действительный выход за пределы индуктивизма - неоднозначные законы, которых так много в «Оптике». Законы, выведенные из опыта, нужно считать верными, «чтобы доводы индукции не уничтожались предположениями».

Каково рациональное содержание этого требования, получившее у Ньютона абсолютизированную, крайне антикартезианскую форму?

Вспомним о «внешнем оправдании» и «внутреннем совершенстве». Последнее состоит в минимальном числе допущений, необходимых для выведения данного эмпирически проверяемого заключения, в исключении гипотез ad hoc, в естественности теории. Здесь в неявной форме выражен очень важный постулат, неявно присутствующий и в «Началах»: постулат простоты мироздания, единства управляющих им законов и связанной с этим возможности понять мироздание на пути растущего «внутреннего совершенства» физических теорий. Бесконечность познания не противоречит вере в такую возможность, она вытекает из бесконечной сложности мироздания, управляемого едиными законами. Декарт допустил возможность единых законов и формулировал их, но при построении картины мира он не останавливался перед нагромождением моделей, выдвинутых ad hoc, специально для объяснения отдельных явлений. Действительное стремление к тому, что можно назвать историческим антецедентом критерия «внутреннего совершенства», - особенность творчества Ньютона, его вклад в развитие методов науки, в поиски единства законов мироздания. «Физика принципов» противостояла «физике гипотез», потому что «принципы» были более общими основами знания, а картезианские модели - частными, дополнительными, нарушающими единство картины мира.

Оправдание таких гипотетических моделей состоит в том, что критерий «внутреннего совершенства» - идеальный критерий, всегда допускающий некоторое число гипотез, противоречащих идеальному «внутреннему совершенству». Достаточно напомнить о множественности моделей в современной теории элементарных частиц. Были такие модели и у Ньютона. Он сделал то, что было возможно в его время, - отграничил неоднозначные модели от достоверных принципов.

Можно думать, что напряженное, достигшее масштаба, свойственного гению, стремление к однозначности отразилось и в особенностях личности Ньютона. Его нежелание вступать в споры вытекало из глубокого убеждения в незыблемости индуктивно выведенных принципов и в неизбежной неоднозначности моделей.

Уверенность в фундаментальности выводов, полученных путем индукции, в какой-то мере исключает полемический подтекст научных работ. Такой подтекст, а чаще даже открытый текст был в «Диалоге» Галилея, его почти не было в «Беседах» и вовсе не было в «Началах» Ньютона. Правда, не было до тех пор, пока «Начала» не попали в руки Р. Котса - фанатичного антикартезианца, который вписал в предисловие ко второму изданию весьма темпераментные филиппики против вихрей Декарта и против идей французского мыслителя в целом. Как отмечает С. И. Вавилов, стиль Котса далек от «величавого и всегда спокойного стиля автора „Начал“» (6, 201). Стиль Ньютона спокоен и величав там, где речь идет о достоверных и кажущихся непосредственными констатациями фактов законах механики. Он становится менее уверенным там, где речь идет о физической природе сил. Но не эти уступки «модельному» мышлению свидетельствуют о картезианских корнях ньютонианства. Основные разделы «Начал», идеи динамизма в их наиболее отчетливой форме раскрывают смысл выражения «картезианские корни ньютонианства», которое показалось бы парадоксальным во времена ожесточенной борьбы между двумя мировоззрениями.

Перейдем теперь к анализу ньютоновской трактовки пространства, времени и движения. Рассмотрим сформулированные Ньютоном понятия относительного и абсолютного времени и пространства. После исходных определений массы, количества движения, силы и т. п. в «Началах» помещено «Поучение», в котором содержатся определения.

Абсолютное время, говорит Ньютон, не имеет отношения к каким-либо событиям, оно существует само по себе и протекает равномерно. Напротив, «относительное , кажущееся или обыденное время есть или точная или изменчивая, постигаемая чувствами, внешняя, совершаемая при посредстве какого-либо движения мера продолжительности, употребляемая в обыденной жизни вместо истинного математического времени как-то: час, день, месяц, год» (3, 30).

По определению Ньютона, «абсолютное пространство по самой своей сущности безотносительно к чему бы то ни было внешнему остается всегда одинаковым и неподвижным. Относительное есть его мера или какая-либо ограниченная подвижная часть, которая определяется нашими чувствами по положению его относительно некоторых тел и которая в обыденной жизни принимается за пространство неподвижное...» (там же).

Ньютон доказывает, что путем непосредственного наблюдения ни при каких условиях невозможно установить различие между отдельными частями абсолютного пространства и абсолютного времени. Восприятию доступны лишь относительные положения предметов, т. е. расстояния их от других тел, принимаемых за неподвижные. Поэтому практически приходится пользоваться определением относительных мест предметов. «В делах житейских, - писал Ньютон, - это не представляет неудобства, в философских необходимо отвлечение от чувств» (там же. 32). Таким образом, Ньютон отделяет анализ пространства от непосредственного наблюдения. Он отличает понятие абсолютного пространства и от понятия реального неподвижного тела. «Может оказаться, - продолжает Ньютон, - что в действительности не существует покоящегося тела, к которому можно было бы относить места и движения прочих» (там же).

Ньютон формулирует чрезвычайно важный принцип неоднозначности относительных движений. Если к телу приложена сила, то его относительное движение может быть любым, даже нулевым, в зависимости от движения тел отсчета. В частности, если к телу вовсе не приложена сила, оно может двигаться с любой скоростью относительно других тел. Поэтому заключение об абсолютном характере движения не может быть сделано на основе наблюдения относительных движений. Мы можем наблюдать лишь относительные движения; абсолютное движение остается ненаблюдаемым и с кинематической точки зрения непредставимым.

Абсолютное движение можно обнаружить по силам инерции, в частности по центробежным силам, которые возникают во вращающемся теле и не могли бы возникнуть при вращении мира относительно тела. Ньютон приводит знаменитый пример вращающегося сосуда с водой. Вода поднимается к краям сосуда, но если бы он был неподвижен, а вращался окружающий мир, этого бы не произошло, следовательно, утверждение о вращении сосуда неэквивалентно противоположному утверждению, и существует привилегированная система отсчета: мировое пространство неподвижно в абсолютном смысле, а сосуд с водой движется в столь же абсолютном смысле.

Нетрудно увидеть эмпирические, в частности астрономические, корни ньютоновской концепции абсолютного пространства. С точки зрения Ньютона, важнейшим аргументом в пользу абсолютного характера движения Земли служит ее сжатие у полюсов и уменьшение тяжести вблизи экватора. Если бы Земля не испытывала абсолютного вращения, центробежная сила не возникла бы. Поэтому для Ньютона центробежная сила, сплющивающая Землю и уменьшающая тяжесть при приближении к экватору, - непререкаемое доказательство вращения Земли в абсолютном пространстве.

Абсолютное время связано с мгновенным действием на расстоянии. Если тело начинает притягивать другое и в тот же момент другое тело испытывает притяжение, то существует единое время, одно и то же во всем бесконечном пространстве. Как сейчас можно было бы сказать, мгновенная фотография Вселенной имеет физический смысл. Вселенную охватывает не зависящий от конкретных движений единый поток абсолютного времени.

Для неускоренного движения, движения по инерции, Ньютон формулирует принцип, получивший название классического принципа относительности или принципа относительности Галилея - Ньютона: «Относительные движения друг по отношению к другу тел заключенных в каком-либо пространстве одинаковы , покоится ли это пространство или движется равномерно и прямолинейно без вращения» (3, 45).

Адекватная оценка ньютоновской идеи относительности и ньютоновского абсолютизма, характеристика того, какое место в истории познания занимают сформулированные в «Началах» понятия абсолютного пространства, времени и движения, с одной стороны, и принцип относительности- с другой, возможны лишь в рамках современной ретроспекции, post factum, после того как устранены все эмпирические основы такого абсолютизма.

Вопрос о пространстве и времени имеет непосредственное отношение к основному вопросу философии. Материя - протяженная субстанция, воздействующая на органы чувств. Если пространство стягивается в непротяженную точку, то такая точка перестает быть материей и отдает титул субстанции непротяженному мышлению. Таким образом, отрыв времени от пространства есть субстанциализация непротяженного духа. В этом отношении научный подвиг Ньютона - важнейший этап в развитии философии, шаг к идее многомерной протяженности мира в противоположность фикции непротяженной субстанции. Мир представляется Сенсусу бесконечно сложным. Упорядочивающий эту сложность Логос вводит растущую многомерность в картину мира. Логос без Сенсуса ведет к ликвидации протяженной субстанции, Сенсус без Логоса не может дать представления о стоящей за видимостью явлений протяженной многомерной субстанции. В единстве эмпирического и логического - наиболее общее гносеологическое определение относительности.

Какова связь «натуральной философии» с религиозными взглядами Ньютона и его историко-филологическими трудами?

Л. Розенфельд считает источником характерной для Ньютона связи и коллизии религиозных и натурфилософских идей взгляды уже известного нам кембриджского платоника Генри Мора (см. 22). Последний усвоил представления итальянских неоплатоников о бесконечном пустом пространстве, приписав богу управление находящимся в этом пространстве миром. Бог не сливается с пространством и с находящейся в пространстве совокупностью материальных тел, он находится в пространстве и повелевает миром. Мировоззрение Мора, проникнутое теизмом, противостояло деизму, также оказавшему влияние на Ньютона. Не следует, однако, смотреть на коллизию теизма и деизма глазами XVIII века, когда Вольтер противопоставил их друг другу и, опираясь на механику Ньютона, нашел новые аргументы для обоснования деизма. В целом сам Ньютон не был деистом, он, как и Мор, принадлежал к теистам. Основные идейные противоречия в Англии второй половины XVII в., во времена английской революции, были противоречиями внутри теизма, но это придавало самому теизму неопределенную форму, которая соответствовала множественности и изменчивости церквей и церковных догматов. Нетождественность бога и природы была для Ньютона непререкаемой истиной. Но механизм отношения между господином и рабом, между богом и природой оставался нерешенной проблемой. Уже в студенческие годы Ньютон пытался разобраться в этой проблеме (см. 35, 89-156). По существу она так и осталась у него нерешенной.

В чем же состоит тайна связи между богом и телами? Г. Мор в своей неоплатонической концепции вырождения непространственных сущностей в пространственные не видел другого ответа, кроме одушевляющей пространственные тела непространственной субстанции. Ньютона такая концепция не могла удовлетворить, она была слишком традиционной и по существу исключала возможность экспериментального и математического анализа проблемы. Для Ньютона она была двоякой - богословской и вместе с тем физической, он не мог лишить ее физического смысла и физических критериев оценки. Ньютон приходит к картезианской идее, к эфиру, который служит посредником между богом - творцом универсальных законов и постоянной каузальной гармонии бытия, с одной стороны, и природой, движениями тел - с другой.

Однако здесь его постигает неудача. Во второй книге «Начал» Ньютон исследует, исходя из чисто физических принципов, без каких-либо априорных теологических предпосылок проблему движения тел в эфире. Оказывается, что сопротивление эфира сделало бы неточным, приближенным закон обратной пропорциональности тяготения и квадрата расстояния. Поэтому Ньютон отказывается от картезианской, «модельной» интерпретации тяготения и вместе с тем от определения физической природы сил: «Достаточно того, что тяготение действительно существует и действует согласно изложенным нами законам» (33, 89-156).

Что это - победа или поражение? И то и другое. Ньютон понимал, что однозначное описание универсальной связи тел, картина динамической гармонии мироздания - это победа. В то же время он сознавал, что физическая нерасшифрованность силы, отказ от «модельного», картезианского объяснения тяготения, от эфира - это поражение. Оно обнаруживается в том, что Ньютон порой возвращается к идее эфира, к необязательным «модельным» гипотезам. Гипотезы в целом дискредитированы принципом «hypothesis non fingo». Но они появляются вновь и вновь. Ньютон предоставляет читателям «Начал» выбирать, какой агент передает тяготение. Физическое действие на расстоянии его не устраивает. Он считает, что тяготение должно причиняться некоторым деятелем, действующим согласно определенным законам.

Многие противники идеи дальнодействия (М. Фарадей, Дж. Максвелл, Дж. Томсон и др.) приписывали Ньютону мысль о материальной среде, являющейся причиной тяготения. Но продолжением приведенного отрывка служит фраза: «Какой это деятель - материальный или нематериальный, - я предоставляю размышлению моих читателей». Именно эти слова о «нематериальном деятеле» Фарадей отбрасывает как непонятные. Они действительно непонятны без исторического анализа различных идейных корней творчества Ньютона, различных влияний, противоречивых тенденций и его собственных колебаний между исключающими друг друга концепциями.

Читателям предоставляется выбор между эфиром и непосредственным вмешательством бога. Но такое вмешательство низводит бога до постоянного участника физических процессов, управляющего природой на основе неизменных и точных законов. Леон Розенфельд с большим остроумием и с большим проникновением в исторические корни пуританского теизма периода английской революции сравнивает бога Ньютона с королем, которого требовала буржуазия Англии,- с сувереном, полностью подчиненным обязательным, нерушимым законам (22, 90-91).

Вернемся к проблеме эфира в связи с таким весьма теистическим и вместе с тем весьма специфическим для Англии представлением о боге. В декабре 1705 г., беседуя с Грегори, Ньютон говорил, что, решая проблему, чем заполнено пространство, свободное от тел, он исходит из презумпции бога, чувствующего природные явления. «Полная истина в том, - пишет Грегори о Ньютоне, - что он верит в вездесущее существо в буквальном смысле. Так как мы чувствуем предметы, когда изображения их доходят до мозга, так и бог должен чувствовать всякую вещь, всегда присутствуя при ней. Он полагает, что бог присутствует в пространстве, как свободном от тел, так и там, где тела присутствуют» (7, 46).

Поистине никто так бесцеремонно не обходится с богом, как верующие в него естествоиспытатели. Ньютон уподобил бога не только новому монарху, не нарушающему принятых английским парламентом законов, - он уподобил его ученому, познающему мир через чувственные впечатления. Бог, согласно Ньютону, связан с миром движущихся тел посредством эфира, заполняющего пустоту и тела, столь же вездесущего, как и бог.

Тяготение и инерция объясняют, как сохраняется эллиптическая орбита планеты, но они не объясняют начало этого движения и эксцентриситет орбиты, которые могут быть объяснены, согласно Ньютону, лишь первоначальным толчком. Ньютон полагал, что вмешательство бога не может быть однократным. Время от времени богу предстоит повторять первоначальный толчок: из закона тяготения вытекает, что в конце концов орбиты небесных тел изменятся и для восстановления небесного порядка потребуется новое вмешательство бога.

Вернемся к «натуральной философии» Ньютона. Ньютоновская схема структуры мироздания связана с соотношением четырехмерного мира движений тел и трехмерного мира действующих на расстоянии сил. У Декарта структура мироздания - иерархия тел - была основана на движении (только двигаясь относительно других тел, данное тело отделяется от них, приобретает индивидуальное бытие), при этом мир обретал структурность. У Ньютона уже не движение, а сила - основа структуры мира. Остановившийся мир сохраняет ее. Система мгновенных силовых действий - основа фикции остановившегося мира. Ньютоновская атомистика рисует структуру мира как иерархию все более интенсивных силовых взаимодействий. В отличие от Лейбница Ньютон отнюдь не считает силу субстанцией мира. Силовые взаимодействия происходят между протяженными телами, и эта протяженность составляет исходное определение материи. Протяженное материальное тело может обладать той или иной массой и весом, тем или иным поведением при заданных приложенных к телу силах. Силы - это модусы протяженной субстанции. Но только при условии приложенных сил и соответственно определенных проявлениях массы тела оно приобретает индивидуальное бытие. Отсюда следует, что мир может быть познан в его дискретности, что структурность мира - основа его познаваемости.

И вместе с тем философия Ньютона - это прежде всего философия непрерывности, потому что ньютоновский подход к дифференциальному и интегральному исчислению не укладывается в рамки математики и является общей теорией бытия и познания.

Что подразумевается здесь под «рамками математики»? Эти рамки понимали по-разному. Как уже отмечалось, в древности геометрические истины казались онтологическими. Представление о математике как о строго логической и вместе с тем полу эмпирической науке создавало иллюзию чисто логического постижения мира. Но по существу в античном взгляде на математику и физику в еще недифференцированном, гибком виде содержались основы сформулированных впоследствии концепций. В классической науке математика отделилась от физики и потеряла онтологический характер. Это отражено в известной формулировке Бертрана Рассела: математика - наука, которая не знает, о чем она говорит и правильно ли то, что она говорит. Неклассическая наука, создавшая физическую геометрию, которая рассматривала гравитационное поле как изменение геометрических свойств пространства, вернулась к античному представлению об онтологической ценности математики, но уже без иллюзии чисто логического постижения истины. Сейчас математика знает, о чем она говорит - она говорит о мироздании; она обладает гносеологической ценностью, потому что ищет истину, и онтологическим содержанием (является учением о бытии), потому что ищет истину.

Если подойти к математическим трудам Ньютона, учитывая поиски истины , представление об онтологической ценности математики, об анализе бесконечно малых как о теории бытия, то это определит несколько иной по сравнению с обычным интерес к сопоставлению трудов Ньютона и Лейбница как создателей дифференциального и интегрального исчислений. Это имеет некоторое отношение к длительному спору о приоритете, начавшемуся еще при жизни обоих мыслителей. Проблеме приоритета в ньютониане уделено еще большее внимание, чем отношению племянницы Ньютона к Монтегю или даже знаменитому яблоку. Случай с яблоком в отличие от, по-видимому, довольно благополучного романа мисс Катерины Бартон вызывает некоторые вопросы и сейчас: связь сенсуального впечатления с физической интуицией продолжает быть существенной проблемой. Что же касается спора о приоритете в создании дифференциального и интегрального исчислений, то он, как уже говорилось, имеет и собственно «неприоритетную» сторону. Спор о приоритете в открытии предполагает ответ на вопрос: в чем все-таки состояло открытие? Нас интересует здесь одна сторона этого вопроса - выяснение того вклада, который внесло открытие Ньютона и Лейбница в развитие представлений о бытии в целом.

Античные парадоксы непрерывного движения являются далекой предысторией анализа бесконечно малых как онтологической концепции. Зенон сформулировал свои апории для обоснования теории бытия, теории субстанции элеатов. Логическая коллизия стрелы, которая не может достичь цели; Ахиллеса, который не может догнать черепаху, и т. д. - это доказательство несубстанциальности движения, неподвижности бытия. Классическая наука в значительной мере вышла из гераклито-зеноновской коллизии, коллизии движения и неподвижности. У нее были предшественники, начиная с Эвдокса и Архимеда. Но у Ньютона и Лейбница выход из указанной онтологической коллизии был различным. Лейбниц исходил из иерархии дискретных частей материи. Поведение низшего звена иерархии он считал несущественным для закона, управляющего поведением высшего звена: движения песчинки несущественны для судеб горы. Это была линия континуализации, которая в XIX в. вела от атомистики, от кинетической теории материи к макроскопической континуальной термодинамике. Ньютон был ближе к представлению о бесконечно малой как о переменной величине, стремящейся к пределу. Что означает такое различие для онтологической проблемы? Лейбниц исключал проблему непрерывной протяженности для микрочастицы, ведь непрерывная протяженность, если ей придать физический смысл, означает непрерывную делимость. Любое звено атомистической иерархии может рассматриваться как неделимое, для этого нужно только перейти к более высокому звену иерархии. Позиция Ньютона была иной. Он строил атомистические гипотезы, но они оставались в сфере условных кинетических моделей. В однозначной, канонической части картины мира фигурируют флюксии и флюенты, которые служат обобщениями скоростей и ускорений. Тем самым решается фундаментальная апория бытия: прошлого уже нет, настоящее - нулевая по длительности грань между тем и другим. Выходом из этой аннигиляции бытия (связанной с апориями движения у Зенона) было не дифференциальное и интегральное исчисления, а дифференциальное представление о движении от точки к точке и от мгновения к мгновению. Оно было выходом и из апории тождественности, сформулированной гораздо позже. Здесь математика также служит отображением бытия, и апория иллюстрирует онтологическую ценность математики. Под апорией тождественности мы подразумеваем основную мысль Эмиля Мейерсона, высказанную и развитую в ряде его философских и историко-научных трудов. Она очень хорошо выражена Луи де Бройлем в предисловии к посмертному изданию «Essais» Мейерсона. Рациональное постижение мира, говорит де Бройль, основано на сближении объектов природы: мы находим среди них столь близкие, что возникает возможность ввести общие понятия. «Но поскольку Вселенная несводима к пустой тавтологии, мы должны включить в описание природы „иррациональные“ элементы, которые сопротивляются нашим попыткам отождествления» (37, VI-IX). Если результат действия ничем не отличается от причины, то, следовательно, в нем нет ничего, что бы уже не существовало, каждое мгновение тождественно предыдущему, время сливается в одно мгновение, и его поток исчезает. С этим связана тавтологичность, угрожающая математике: если то, что дедуктивно выведено, тождественно исходному условию, математика не может сказать ничего нового. Можно показать, что апория Мейерсона и апория тавтологичности в математике имеют одну и ту же природу и тесно связаны с апорией непрерывного движения (см. 12, 101-176).

Ньютон был первым, кто создал единую и достоверную теоретическую систему, которая решила парадоксы античной и средневековой мысли, вытекавшие из коллизии пребывания и движения. В центре научного объяснения мира у него оказываются дифференциальные законы , действующие от точки к точке. Это законы движения, включающие постоянную массу, они становятся основой тождественности тела самому себе. Понятия скорости и ускорения и связанные с ними законы становятся основой мировой динамической гармонии. Они не теряют смысла, когда тело находится в данный момент в данной точке, напротив, переход через каждое здесь-теперь гарантирует себетождественность тела, пребывание в здесь-теперь сохраняет предикаты движения, именно здесь определяются скорость и ускорение.

Отсюда - ответ на часто возникающий вопрос: какие идеи Ньютона были главными, кем он был в первую очередь - астрономом, оптиком, механиком, математиком?.. Из сказанного вытекает, что он был прежде всего математиком и главной его идеей было дифференциальное представление движения. Он был математиком в новом смысле этого слова, творцом математики как онтологической дисциплины, как основания картины мира. Можно сказать, что название главной работы Ньютона отвечает на вопрос о фарватере его творчества. «Математические начала натуральной философии» - здесь каждое слово - точный ответ на заданный вопрос. В этой работе еще не применены, а только сформулированы идеи анализа бесконечно малых, но динамические представления уже делают математику основой картины мира. Поэтому слово «начала» точно передает смысл книги и смысл научного подвига ее автора. И слово «философия» тут обосновано. В XVII в. происходит трансформация философии, не менее радикальная, чем трансформация математики. Философия опирается на достижения науки и поднимает их до уровня общего учения о бытии. Именно в этом смысле и можно назвать Ньютона философом и говорить о его философии. И конечно, это натуральная философия - не в том смысле, что она является натурфилософией (она даже противоположна натурфилософии), а потому что предмет ее исследования - естественная гармония бытия. Конечно, в такое определение главной идеи Ньютона не входит то, что было неглавным в его творчестве. Но для эпохи Ньютона не в меньшей степени, чем для других эпох, характерны наличие неглавных идей и их коллизия с главными.

Как согласовать такую коллизию с присвоением идеям Ньютона титула «классические»? По-видимому, и здесь существенно сочетание инвариантности и трансформации в истории познания. Выражения «классическая древность» или «классическое искусство» отнюдь не означают повторения канонов, которые стали бессмертными в архитектурных памятниках, скульптурах, поэмах и трагедиях Древней Греции. Сейчас речь идет, как и в эпоху Возрождения, о бессмертии, о продолжающейся жизни, о новых впечатлениях, чувствах и мыслях, которые внушали и внушают Венера Милосская или Ника Самофракийская. Аналогичным образом мы ощущаем бессмертие диалогов Платона или «Физики» Аристотеля. В целом античная культура вызывает прежде всего ощущение грандиозности того поворота в мыслях и чувствах людей, того расширения арсенала понятий, логических норм, фактических знаний, которые имели место в древности. Когда смотришь на статую Венеры Милосской, ее красота поражает прежде всего многообразностью, бесконечной многомерностью и вместе с тем единством образа. Это впечатление настолько интенсивно, что оно как бы берет в одни скобки все дальнейшее развитие цивилизации, как детство человека чарует нас обещанием, новизной, свежестью, тем, что нельзя повторить (см. 1, 12 , 737-738).

Творчество Ньютона - это конец «бури и натиска» и начало органического развития науки. Поэтому, читая его главный труд, мы еще ощущаем ренессансную свежесть впервые высказанной мысли, но она уже уступает место «взрослой» уверенности в ее классической достоверности. Для современного читателя «классическая достоверность», да и сама классическая наука, стала приближением, законным в известных пределах, при определенных значениях физических величин. Современная наука и не претендует на то, чтобы стать когда-нибудь классической в традиционном смысле этого слова. Самосознание современной науки отнюдь не противопоставляет «ренессансные» и «ньютоновские» оценки.

Есть еще одна интегральная характеристика идей Ньютона, которая позволяет в наибольшей мере почувствовать связь трансформации и инвариантности в истории науки. Речь идет о так называемом механицизме ньютоновой классической картины мира. Уже в XIX в. была в значительной мере осознана безуспешность попыток сведения всех закономерностей, наблюдаемых в природе, к законам механики. «Диалектика природы» Энгельса была обобщением тех открытий в науке XIX в., которые продемонстрировали несводимость сложных форм движения к механическому перемещению. Но такая несводимость не отменяет связи сложных форм движения с механикой, с пространственным перемещением. Механика охватывает изменения пространства с течением времени, это четырехмерный аспект мироздания (три пространственные координаты меняются вместе с изменением времени). Именно это наиболее общее содержание механицизма, собственно уже не заслуживающее такого названия, не связанное однозначно с идеей сведения всех форм движения к механике, оказывается первым шагом развивающегося естествознания, идущего от трехмерной схемы бытия, от неподвижной схемы мироздания к движению, причем к движению все более сложному. Необратимость познания основана на необратимом усложнении картины мира, так же как необратимость времени в целом основана на последовательном усложнении объекта познания - мира. Определение времени, из которого вытекает его необратимость, «стрела времени», принципиальная невозможность тождества позже и раньше , основано на следующем. Если изобразить мироздание геометрической схемой, то оно окажется трехмерным, четырехмерным и, далее, n-мерным многообразием, причем число измерений n необратимо растет. Именно этот рост изображен в геометрической схеме (n + 1)-й координатой - временем. В классической науке идея необратимости времени была негативной, она основывалась на констатации растущей энтропии и перспективы тепловой смерти. В современной квантово-релятивистской теории необратимости времени - позитивное определение; идея необратимости основана, в частности, на некоммутативности квантовых процессов: измерение динамической переменной меняет другую переменную, поэтому возратиться назад, к тому, что было до измерения, невозможно (см. 14).

Познание мира также необратимо, оно отражает объективное бытие и создает все более сложную, многоплановую, многомерную картину мира. Усложнение картины мира сделало необходимой аналогию с абстрактным n-мерным пространством. Но об этом речь будет идти ниже. Такое усложнение является делом XVIII-XIX веков и еще больше XX века. В течение этих трех столетий происходило необратимое усложнение картины мира. Менялись частные теории, наука порой возвращалась назад, появлялись концепции, от которых впоследствии целиком отказывались, но фундаментальные идеи Ньютона развивались только в одном направлении: они конкретизировались и усложнялись в своих применениях, а когда наступило время их пересмотра, сохранились как законные в известных пределах аппроксимации. К этой судьбе ньютонианства мы и перейдем.

Из книги Огюст Конт. Его жизнь и философская деятельность автора Яковенко Валентин

Глава V. Позитивная философия Единство двух половин жизни Конта и двух его капитальных трудов. – Что такое положительная философия. – Относительный характер позитивной философии. – Метод. – Содержание «Курса положительной философии». – Классификация наук. –

Из книги Никола Тесла: ложь и правда о великом изобретателе автора Образцов Петр Алексеевич

Глава 1 Философия и микробы В 1872 году вышел роман Эдварда Бульвер-Литтона "Грядущая раса", который Тесла с интересом прочитал, но не придал особого значения. Хотя исследователи научного творчества ученого полагают, что подсознательно он очень даже хорошо усвоил

Львов Владимир Евгеньевич

Глава тринадцатая. Философия Эйнштейна 1 Альбом с портретами» под фирмой НСДАП выражал, по существу, тот же самый «дух», который в ином плане был представлен книгой «Сто авторов» и прочими подобными изданиями.Идеологическая реакция, ухватившаяся в предвоенные годы за

Из книги Бамбуковая колыбель автора Шварцбаум Авраам

Глава 11. Философия Конфуция ВО ВРЕМЯ НАШЕГО первого пребывания на Тайване его многочисленные, бросающиеся в глаза храмы, пагоды и алтари казались нам не более, чем любопытными архитектурными, историческими и культурными достопримечательностями. Религиозная сторона

Из книги 100 пенальти от читателей автора Акинфеев Игорь

Глава 4. ФИЛОСОФИЯ ЖИЗНИ

Из книги Молодой Ясперс: рождение экзистенциализма из пены психиатрии автора Перцев Александр Владимирович

Глава IV. Философия как путь к исцелению

Из книги Свами Вивекананда: вибрации высокой частоты автора

Из книги Вл. Соловьев автора Лосев Алексей Федорович

Глава III. Теоретическая философия ритический обзор произведений. В дальнейшем мы попробуем аналитически изложить философию Вл. Соловьева, учитывая по возможности те беспокойные искания философа, с которыми мы столкнулись уже в его биографии. Простота, ясность,

Из книги Свами Вивекананда: вибрации высокой частоты. Рамана Махарши: через три смерти (сборник) автора Николаева Мария Владимировна

Глава 2 «Чистая философия» в действии Всем известно, что философия – самое «бесполезное» занятие, ибо не помогает в делах мирских. Однако такова западная точка зрения на мышление, которая давно уже начала сдавать позиции перед восточным представлением о том, что именно

Из книги Бернард Больцано автора Колядко Виталий Иванович

Из книги Франсуа Мари Вольтер автора Кузнецов Виталий Николаевич

Из книги Гоббс автора Мееровский Борис Владимирович

Глава IV. Философия природы В «Истории философии нового времени» Л. Фейербах писал: «Как мышление... у Гоббса не что иное, как чисто внешняя, механическая операция счисления, так и природа для него предмет не как живое существо, но как мертвый объект... и потому его философия

mob_info